MACHINE SOLUTIONS INC.

USER MANUAL

BEAHM DESIGNS SPLIT DIE THERMAL BONDER MODEL 320-B

Machine Solutions Inc. 2951 W. Shamrell Blvd. Flagstaff, Arizona 86005 USA Tel: 928.556.3109 • Fax: 928.556.3084 info@machinesolutions.com • www.machinesolutions.com © 2011 Copyright Machine Solutions Inc. All rights reserved.

Table Of Contents

List of Figures	3
List of Tables	3
Welcome	4
Purpose	4
Overview	4
Contents	4
Installation	4
Safety	5
User Alerts	5
Set Up and Configuration	6
System Controls and Functions	7
Parameter Settings	9
System Operation	10
Temperature Controllers (Omega Platinum Model)	10
PID Configuration (PRoG > PId.S)	10
Action Response (PRoG > PId > ACtN)	10
Autotune Timeout (PRoG > PId > A.to)	10
Autotune (PRoG > PId > TUNE)	11
Temperature Controller Layout and Description of Button Actions	11
Resetting the temperature controller	12
Changing Temperature Units on the Omega Temperature Controller	21
Run Process	21
Maintenance	22
Exchanging Die Heads	22
Exchanging Vee Guides	22
Aligning Tooling	22
Preventative Maintenance	23
Operational Requirements	23

System Specifications	23
Critical Spare Parts	23
Diagnostics (Troubleshooting)	24
Facility Requirements	25
Warranty	25
Appendix	26
Die Head Sizing	26

List of Figures

	0	
Figure 1.	Grip/Positioning nests	6
Figure 2.	320-B Split Die Thermal Bonder Front Panel	7
	320-B Split Die Thermal Bonder Back Panel	
0	Controller Layout	
-	Description of Button Actions	
0	F	

List of Tables

Table 1. Control and Display Functions (Front)	
Table 2. Control and Display Functions (Back)	
Table 3: System Specifications	
Table 4. Critical Spare Parts	
Table 5. Diagnostics and Troubleshooting	

Welcome

Machine Solutions, Inc. (MSI) would like to take this opportunity to thank you for purchasing your new 320-B Split Die Thermal Bonder machine. At MSI, we are dedicated to bringing innovative process development solutions to both medical device and nonmedical organizations. MSI looks forward to helping your organization provide life-improving devices to your customers, today and tomorrow.

Purpose

The purpose of this document (*Original Instructions*) is to describe the electrical and software design of the control system for the Split Die Thermal Bonder, 320-B. This document also includes operator instructions.

Overview

The Beahm Designs Inc. Model 320-B Split Die Thermal Bonder is a system for the purpose of thermal bonding or welding thermoplastic components to other materials by means of a pair of heated dies. The system features two die heads that remain at a constant process temperature vs. cycling the heat on and off. Each die head features one half of the bond diameter and are "opened" or separated from each other to allow the components to be positioned within the bored diameter. Digital timers control the bond and cool durations and integrated tooling secure the components during the process.

Contents

Included with the system are the following contents:

- Die Base and Control Unit
- IEC Power cord
- Compressed Air Supply Hose Assembly

Installation

- 1. Place the system on a level, sturdy surface at an ergonomically viable height for the user.
- 2. Connect the electrical and pneumatic umbilical's to the die base unit.
- 3. Connect the power cord to the main unit.
- 4. Connect the air supply to the system and then to a clean, dry, and filtered compressed air source.

Safety

- Use of eye protection when working with compressed gases and heated materials is advised.
- The maximum observed Sound Pressure Level is below 70 dB(A).
- Die jaws will become hot during operation and, depending on temperature set point, can cause severe skin burns if contact occurs.

CAUTION: High voltage. Remove power and use safety precautions when servicing.

CAUTION: Hot surface. Contact may cause burn. Allow to cool before servicing.

CAUTION: Pinch point. Keep hands and body parts clear while in operation.

User Alerts

Do not use the equipment other than as prescribed. Examples: Do not attempt to sit on or climb on the equipment. Do not place heavy objects or containers of liquid on the machine. Do not insert any foreign objects into the machine and do not attempt to bypass any guards or otherwise operate the machine in any manner other than that in which it is explicitly intended.

NOTE: The equipment is not for use with materials that can decompose or ignite below the maximum operating temperature of the machine. Hazards are materials that outgas hazardous substances and or ignite. (260°C/500°F).

NOTE: This equipment is not for use in an ATEX environment.

Set Up and Configuration

Proper sizing of the die heads and alignment of the tooling are crucial to optimizing process results and repeatability. The following guidelines are the recommended methods. However, all applications vary, and several iterations of tooling process development may be required and may not follow all the recommended guidelines.

Die Head Diameter - In most applications, the bore of the die heads should be in contact with the heat shrink or other protecting sleeve covering the bond area. A .002"-.003" interference is usually sufficient.

Use the following steps to determine the bore diameter.

- 1. Assemble the components to be bonded.
- 2. Install the protective sleeve over the bond area.
- 3. If using heat shrink, then pre-shrink the sleeve.
- 4. Measure the diameter at the bond area.
- 5. Subtract .002"-.003" from this measurement.
- 6. Bore this diameter through the die heads.

Refer to Appendix for die head sizing.

Die Head Width - The die head width can vary greatly between applications and especially between butted (Butt) joints and overlap (Lap) joints. Since the 320-B is most used for Lap Joints the die head width should be sized equal or slightly greater than the length of the overlap of the materials.

Grip/Positioning Nests - This is the most forgiving of the tooling. The included, standard vee configurations are more than adequate for most applications. More important than the guide design and dimensions is alignment with the die heads. Refer to the maintenance section for the alignment procedure.



Figure 1. Grip/Positioning nests

System Controls and Functions

Located on the front and back panels of the Split Die Thermal Bonder are the following controls and/or displays and their functions:

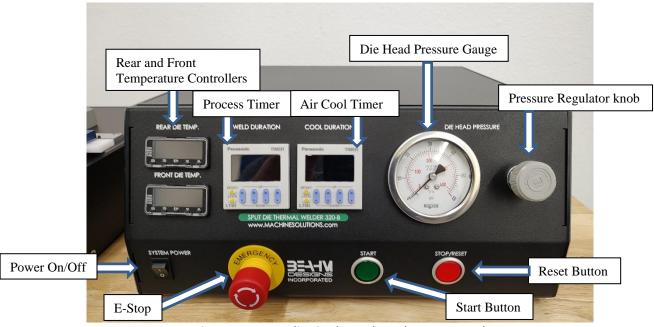


Figure 2. 320-B Split Die Thermal Bonder Front Panel

Description	Function
Main power switch	Toggles system power and air on and off.
Start switch	Initiates process sequence.
Stop/Reset switch	Interrupts the process sequence and resets the system timer.
Front Die temperature controller	Controls the temperature of the front die head.
Rear Die temperature controller	Controls the temperature of the rear die head.
Heat Duration Timer	Controls the duration that the die heads are closed and/or in contact with the product.
Cool Duration Timer	Controls the duration the cooling air flows
Die head pressure regulator	Regulates the pressure of the die head actuation cylinder.
Die head pressure gauge	Displays the pressure applied to the die head actuation cylinder.

Table 1. Control and Display Functions (Front)

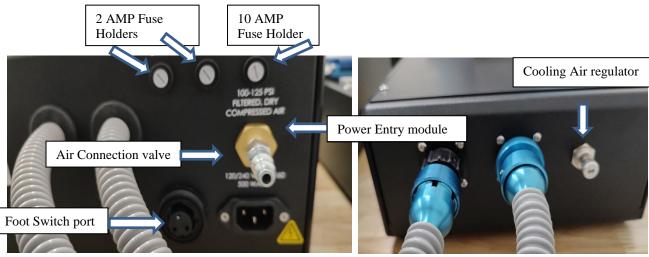


Figure 3 320-B Split Die Thermal Bonder Back Panel

Description	Function				
Power Entry Module	Connects to power cord				
Industrial System Air Connection Controls system air supply.					
Foot Switch Allows connection to foot pedal.					
Two 10 Amp Fuse HoldersProtects power distribution					
Cooling Air Regulator	Control flow of cooling air.				

Table 2. Control and Display Functions (Back)

Parameter Settings

- 1. Temperature Controller (Optional Eurotherm Temperature Controller)
 - Depress and hold the up or down arrow key of the temperature controller to scroll to the desired temperature. After 2 seconds the new value will be accepted, and the temperature will ramp to the new set point.
 - Set the die temperature on EACH temperature controller by pressing the UP/Down arrow key once to display the set temperature, then again to change it.

Refer to System Operation for instructions on Omega Temperature Controller.

- 2. **Setting Heat Duration** Depress the upper or lower half of the corresponding time digit change its value. Depress the STOP/RESET switch to reset the timer to the new value.
- 3. **Setting Cool Duration** Depress the upper or lower half of the corresponding time digit change its value. Depress the STOP/RESET switch to reset the timer to the new value.
- 4. **Adjusting Die Pressure** Rotate the regulator knob clockwise or counterclockwise until the pressure gauge displays the desired value.

System Operation

Temperature Controllers (Omega Platinum Model)

Please note, the Omega temperature controllers have been auto tuned and are set for optimal performance. Contact Beahm Designs for further diagnostics and instructions.

PID Configuration (PRoG > PId.S)

	Navigate to the desired setting. Settings include the following:
	 ACtN – Action direction moves up or down to SP1.
	 A.to – Autotuning Timeout sets a maximum amount of time for
	Autotuning.
	 AUto – Initiates Autotuning
	 GAIN – Select the proportional, integral, and derivative factors for manual
	tuning.
	 %Lo – Low clamping limit for Pulse and Analog outputs
	 %HI – High clamping limit for Pulse and Analog outputs
	 AdPt – Fuzzy logic adaptive tuning
J	Select the desired parameter.

Action Response (PRoG > PId > ACtN)

ſ	Select the Direction (ACtN) parameter.
	 Navigate to the desired setting. Settings include the following: RVRS – "Reverse Action": Increase to SP1, such as heating (factory default) dRCt – "Direct Action": Decrease to SP1, such as cooling RVRS/dRCt – Increase or Decrease to SP1, such as heating/cooling
ſ	Select the indicated setting.

Autotune Timeout (PRoG > PId > A.to)

L	Select the Autotune Timeout (A.to) parameter.
	Set the amount of time before the Autotune process gives up and times out in Minutes and Seconds (MM.SS). Slowly responding systems should have a longer time-out setting.
J	Select the indicated setting.

Autotune (PRoG > PId > TUNE)

Select the Autotune (AUto) command. The unit displays StRt.

Confirm Autotune activation. The unit attempts to optimize the P, I, and d settings by stimulating the system and measuring the response. If the A.to time out period expires before the Autotune operation can complete, the unit displays a failure message E007. If the Autotune operation completes successfully, the unit displays the message "doNE" and the Run mode is switched to IDLE.

The Autotune function will select the tuning algorithm depending on the stability of current process and the error difference between current process and the Control Setpoint (SP1). If the process is relatively stable (i.e. at room temperature), a bump test will be performed to determine the plant characteristics.

If the process is hot, or if the process is within 10% of Control Setpoint, limit cycle oscillation will be performed with the tuning setpoint taken at the process value when the Autotune function is triggered. Autotuning may be performed as many times as needed or when the operating conditions (i.e: process load, or setpoint) have changed significantly. To obtain good tuning results, ensure the process is stable prior to triggering autotune function. The process is stable when it is at ambient temperature, or it is tracking Control Setpoint (SP1) in auto mode.

Adjusting Temperature on Controllers (Omega Platinum Model)

- 1. Press the right arrow button one time until "SP-1" is displayed.
- 2. Press the enter button to access the temperature screen.
- 3. Use the left and right arrow buttons to set desired temperature.
- Once the desired temperature is set, press the enter button to return to the main screen. Heaters will ramp to correct temperature.

Temperature Controller Layout and Description of Button Actions

Figure 4: Controller Layout

The UP button moves up a level in the menu structure. Pressing and holding the UP button navigates to the top level of any menu (**oPER**, **PRoG**, or **INIt**). This can useful if you get lost in the menu structure.

The LEFT button moves across a set of menu choices at a given level (up in the Section 4 menu structure tables). When changing numerical settings, press the LEFT button to make the next digit (one digit to the left) active.

The RIGHT button across a set of menu choices at a given level (down in the Section 4 menu structure tables. The RIGHT button also scrolls numerical values up with overflow to 0 for the flashing digit selected.

The ENTER button selects a menu item and goes down a level, or it enters a numerical value or parameter choice.

Figure 5: Description of Button Actions

NOTE: For a more detailed look at the complete menu structure, please refer to the following pages. A full description of features can be found here: https://assets.omega.com/manuals/M5451.pdf.

Resetting the temperature controller

NOTE: Press ' \uparrow ' to select the operator menu (Oper) NOTE: See the following chart for the correct settings for the Beahm 320B. Settings to change in RED.

- 1. Initialization Mode Menu (INIt)
 - a. The following table maps the Initialization Mode (INIt) navigation:

Level	Level	Level	Level	Level	Level	Level	Notes
2	3	4	5	6	7	8	Hotes
INPt	t.C.	k					Type K thermocouple
Sec. 20	1.21	J					Type J thermocouple
		t					Type T thermocouple
		E					Type E thermocouple
		N					Type N thermocouple
		R					Type R thermocouple
		S				0	Type S thermocouple
		b					Type B thermocouple
		С					Type C thermocouple
	Rtd	N.wIR	3 wl				3-wire RTD
			4 wl				4-wire RTD
			2 wl				2-wire RTD
		A.CRV	385.1			1	385 calibration curve, 100 Ω
			385.5				385 calibration curve, 500 Ω
			385.t			1	385 calibration curve, 1000 Ω
			392				392 calibration curve, 100 Ω
			391.6				391.6 calibration curve, 100 Ω
	tHRM	2.25k					2250 Ω thermistor
		5k				Î.	5000 Ω thermistor
		10k					10,000 Ω thermistor
	PRoC	4-20					Process input range: 4 to 20 mA
			Note: Th	is Manua	and Live	Scaling s	ubmenu is the same for all PRoC range
	· · · · · ·		MANL	Rd.1			Low display reading
) —			IN.1			Manual input for Rd.1
-				Rd.2			High display reading
				IN.2			Manual input for Rd.2
			LIVE	Rd.1	1		Low display reading
				IN.1			Live Rd.1 input, ENTER for current
				Rd.2			High display reading
				IN.2			Live Rd.2 input, ENTER for current
) 	0-24				-	Process input range: 0 to 24 mA
		+-10					Process input range: -10 to +10 V
			Note: +-	1.0 and +	-0.1 supp	ort SNGL	, dIFF and RtIO tYPE
) — · · · · · · · · · · · · · · · · · ·	+-1	tYPE	SNGL			Process input range: -1 to +1 V

Level 2	Level 3	Level 4	Level 5	Level 6	Level 7	Level 8	Notes
-				dIFF			Differential between AIN+ and AIN-
		-	7	RtLO			Ratiometric between AIN+ and AIN-
		+-0.1					Process input range: -0.1 to +0.1 V
	10		Note: Th	ne +- 0.05	input sup	ports dIF	F and RtIO tYPE
		+05	tYPE	dIFF			Differential between AIN+ and AIN-
				RtLO		1	Ratiometric between AIN+ and AIN-
					-		Process input range: -0.05 to +0.05 V
tARE	dSbL		-		0	0	Disable tARE feature
	ENbL	÷		-			Enable tARE on oPER menu
	RMt					1	Enable tARE on oPER and Digital Input
LINR	N.PNt		-		0	0	Specifies the number of points to use
			Note: Th	ne Manua	/ Live in	outs repe	at from 110, represented by n
	MANL	Rd.n					Low display reading
		IN.n	I				Manual input for Rd.n
	LIVE	Rd.n					Low display reading
		IN.n					Live Rd.n input, ENTER for current
RdG	dEC.P	FFF.F				10	Reading format -999.9 to +999.9
	\sim	FFFF				d	Reading format -9999 to +9999
		FF.FF					Reading format -99.99 to +99.99
	and an other	F.FFF				-	Reading format -9.999 to +9.999
	(°F°C)	(°C)					Degrees Celsius annunciator
	~	°F		-		1	Degrees Fahrenheit annunciator
		NoNE					Turns off for non-temperature units
	d.RNd	Home	r				Display Rounding
	(FLtR)	(8)	· · · · · ·	-			Readings per displayed value: 8
-	0	16		-			16
		32				1	32
	1	64					64
		128					128
		1				6	2
	1	2					3
	-	4					4
			Note: Fo	our digit d	isplays of	fer 2 ann	unciators, Six digit displays offer 6
	ANN.n	ALM.1		an angre d			Alarm 1 status mapped to "1"
		ALM.2	F				Alarm 2 status mapped to "1"
	1	oUt#					Output state selections by name
	NCLR	GRN				10	Default display color: Green
		REd	-			-	Red

Level 2	Level 3	Level 4	Level 5	Level 6	Level 7	Level 8	Notes
		AMbR		-	1	1	Amber
	(bRGt)	HIGH					High display brightness
		MEd					Medium display brightness
	ic.	Low				9	Low display brightness
ECtN	5 V					Ú.	Excitation voltage: 5 V
	10 V						10 V
	12 V					1	12 V
	24 V						24 V
38.18	0 V						Excitation off
OMM	USb					1.	Configure the USB port
-		Note: Th	nis PRot su	ubmenu is	s the same	for USB	, Ethernet, and Serial ports.
	1	PRot	oMEG	ModE	CMd		Waits for commands from other end
					CoNt	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Transmit continuously every ###.# see
				dAt.F	StAt	No	
						yES	Includes Alarm status bytes
					RdNG	yES	Includes process reading
						No	
		1			PEAk	No	1
						yES	Includes highest process reading
		Î.			VALy	No	1
	1	·				yES	Includes lowest process reading
		1			UNIt	No	
						yES	Send unit with value (F, C, V, mV, mA)
				LF	No		
		1			yES		Appends line feed after each send
	1	ĺ.		ECHo	yES	i.	Retransmits received commands
					No		
	-			SEPR	_CR_		Carriage Return separator in CoNt
		1			SPCE		Space separator in CoNt Mode
			M.bUS	RtU			Standard Modbus protocol
				ASCI			Omega ASCII protocol
		AddR			0		USB requires Address
	EtHN	PRot					Ethernet port configuration
		AddR					Ethernet "Telnet" requires Address
	SER	PRot					Serial port configuration
		C.PAR	bUS.F	232C			Single device Serial Comm Mode
				485			Multiple devices Serial Comm Mode
	ic -		bAUd	19.2	1	0	Baud rate: 19,200 Bd

Level 2	Level 3	Level 4	Level 5	Level 6	Level 7	Level 8	Notes
2	3	4	3	9600	1	0	9,600 Bd
	-			4800			4,800 Bd
				2400			
	-			1200			2,400 Bd 1,200 Bd
	-			57.6			57,600 Bd
				115.2			
	-		PRty	odd	-		115,200 Bd Odd parity check used
			FRLY	EVEN	e		
							Even parity check used
				NoNE			No parity bit is used
			141.4	oFF			Parity bit is fixed as a zero
			dAtA	8blt		<u></u>	8 bit data format
	i		1220120	7blt			7 bit data format
	ļ		StoP	1blt			1 stop bit
				2blt			2 stop bits gives a "force 1" parity bit
-		AddR				-	Address for 485, placeholder for 232
SFty	PwoN						RUN on power up if not previously faulted
		wAlt				1	Power on: oPER Mode, ENTER to run
		RUN			-	-	RUN's automatically on power up
	RUN.M	dSbL					ENTER in Stby, PAUS, StoP runs
		ENbL					ENTER in modes above displays RUN
	SP.LM	SP.Lo					Low Setpoint limit
		SP.HI					High Setpoint limit
	SEN.M						Sensor Monitor
		LPbk	dSbL			<u>[</u>	Loop break timeout disabled
			ENbL				Loop break timeout value (MM.SS)
		o.CRk	ENbl			Ĵ.	Open Input circuit detection enabled
			dSbL			ĵ.	Open Input circuit detection disabled
		E.LAt	ENbl				Latch sensor error enabled
			dSbL			1	Latch sensor error disabled
	OUT.M						Output Monitor
		oUt1					oUt1 is replaced by output type
	1		o.bRk			1	Output break detection
				dSbL			Output break detection disabled
				ENbl	P.dEV		Output break process deviation
			0		P.tME	-	Output break time deviation
		oUt2					oUt2 is replaced by output type
		oUt3					oUt3 is replaced by output type
		E.LAt	ENbl	1			Latch output error enabled

Level 2	Level 3	Level 4	Level 5	Level 6	Level 7	Level 8	Notes
			dSbL				Latch output error disabled
t.CAL	NoNE		-			6	Manual temperature calibration
	1.PNt						Set offset, default = 0
	2.PNt	R.Lo					Set range low point, default = 0
		R.HI				6	Set range high point, default = 999.9
	ICE.P	ok?					Reset 32°F/0°C reference value
		dSbL					Clears the ICE.P offset value
SAVE	2					0	Download current settings to USB
LoAd							Upload settings from USB stick
VER.N	1.00.0						Displays firmware revision number
VER.U	ok?					0	ENTER downloads firmware update
F.dFt	ok?						ENTER resets to factory defaults
I.Pwd	No						No required password for INIt Mode
	yES	a <u></u> a				0	Set password for INIt Mode
P.Pwd	No						No password for PRoG Mode
	yES						Set password for PRoG Mode

2. Programming Mode Menu (PRoG)

a. The following table maps the Programming Mode (PRoG) navigation:

Level 2	Level 3	Level 4	Level 5	Level 6	Notes
SP1)					Process goal for PID, default goal for oN.oF
SP2	ASbo				Setpoint 2 value can track SP1, SP2 is an absolute value
	dEVI			2	SP2 is a deviation value
ALM.1	Note: T	his subm	enu is the	e same fe	or all other Alarm configurations.
	tyPE	oFF			ALM.1 is not used for display or outputs
		AboV			Alarm: process value above Alarm trigger
		bELo			Alarm: process value below Alarm trigger
		HI.Lo.			Alarm: process value outside Alarm triggers
		bANd			Alarm: process value between Alarm triggers
	Ab.dV	AbSo	1		Absolute Mode; use ALR.H and ALR.L as triggers
		d.SP1			Deviation Mode; triggers are deviations from SP1
		d.SP2			Deviation Mode; triggers are deviations from SP2
		CN.SP			Tracks the Ramp & Soak instantaneous setpoint
	ALR.H				Alarm high parameter for trigger calculations
	ALR.L				Alarm low parameter for trigger calculations
	A.CLR	REd			Red display when Alarm is active

Level	Level	Level	Level	Level	Notes
2	3	4	5	6	
		AMbR			Amber display when Alarm is active
		GRN			Green display when Alarm is active
		dEFt			Color does not change for Alarm
	HI.HI	oFF			High High / Low Low Alarm Mode turned off
		oN			Offset value for active High High / Low Low Mode
	LtCH	No			Alarm does not latch
		yES			Alarm latches until cleared via front panel
		botH			Alarm latches, cleared via front panel or digital input
		RMt			Alarm latches until cleared via digital input
	CtCL	N.o.			Output activated with Alarm
		N.C.			Output deactivated with Alarm
	A.P.oN	yES			Alarm active at power on
		No			Alarm inactive at power on
	dE.oN	<u></u>			Delay turning off Alarm (sec), default = 1.0
	dE.oF	<u></u>			Delay turning off Alarm (sec), default = 0.0
ALM.2					Alarm 2
oUt1				1	oUt1 is replaced by output type
	Note: T	his subme	enu is th	e same fo	or all other outputs.
	ModE	oFF			Output does nothing
		PId			PID Control Mode
	i i i		ACtN	RVRS	Reverse acting control (heating)
				dRCt	Direct acting control (cooling)
				RV.DR	Reverse/Direct acting control (heating/cooling)
0.	- C	Pld.2			PID 2 Control Mode
			ACtN	RVRS	Reverse acting control (heating)
				dRCt	Direct acting control (cooling)
0	0			RV.DR	Reverse/Direct acting control (heating/cooling)
		oN.oF	ACtN	RVRS	Off when > SP1, on when < SP1
	(i)			dRCt	Off when < SP1, on when > SP1
			dEAd		Deadband value, default = 5
10			S.PNt	SP1	Either Setpoint can be used of on/off, default is SP1
				SP2	Specifying SP2 allows two outputs to be set for heat/cool
		ALM.1			Output is an Alarm using ALM.1 configuration
3		ALM.2		1	Output is an Alarm using ALM.2 configuration
		RtRN	Rd1		Process value for oUt1
			oUt1		Output value for Rd1
			Rd2	122 22	Process value for oUt2
			oUt2		Output value for Rd2

Level	Level	Level	Level	Level	Notes
2	3	4 RE.oN	5	6	Activate during Ramp events
		SE.ON			Activate during Soak events
		SEN.E			Activate if any sensor error is detected
	u	OPL.E			Activate if any output is open loop
	CyCL	OFLL	1	7	PWM pulse width in seconds
	RNGE	0-10			Analog Output Range: 0–10 Volts
	KINGL	0-10			0-5 Volts
		0-20	-		0-20 mA
		4-20			4-20 mA
		0-24			0-24 mA
oUt2	2	0.24		1	oUt2 is replaced by output type
oUt3				1	oUt3 is replaced by output type (1/8 DIN can have up to 6)
PId	ACtN	RVRS			Increase to SP1 (i.e., heating)
	Activ	dRCt			Decrease to SP1 (i.e., reading)
	-	RV.DR			Increase or Decrease to SP1 (i.e., heating/cooling)
	A.to	NV.DR		-	Set timeout time for autotune
	tUNE	StRt			Initiates autotune after StRt confirmation
	GAIN	_P_		1	Manual Proportional Band setting
	GAIN				Manual Integral Factor setting
	-	_d_			Manual Derivative Factor setting
	rCa	_0_	<u></u>		Relative Cool Gain (heating/cooling mode)
	rCg oFst				Control Offset
9	dEAd		-	19	Control Dead band/Overlap band (in process unit)
	%Lo			12	Low clamping limit for Pulse, Analog Outputs
	%HI			-	High clamping limit for Pulse, Analog Outputs
	AdPt	ENbL		1	Enable fuzzy logic adaptive tuning
	Aurt	dSbL			Disable fuzzy logic adaptive tuning
PId.2	Note: T	his menu	is the ca	me for P	
RM.SP	oFF	ins menu	13 the 30		Use SP1, not remote Setpoint
inivi.or	oN	4-20		1	Remote analog Input sets SP1; range: 4–20 mA
	UN	4 20	Note: T	his subm	enu is the same for all RM.SP ranges.
		-	RS.Lo		Min Setpoint for scaled range
			IN.Lo		Input value for RS.Lo
			RS.HI		Max Setpoint for scaled range
			IN.HI		Input value for RS.HI
	v	0-24	man		0-24 mA
		0-10	-		0-10 V
	(<u> </u>	0-10			0-10 V

Level 2	Level 3	Level 4	Level 5	Level 6	Notes	
M.RMP	R.CtL	No			Multi-Ramp/Soak Mode off	
23		yES		1	Multi-Ramp/Soak Mode on	
		RMt		i	M.RMP on, start with digital input	
	S.PRG				Select program (number for M.RMP program), options 1–99	
	M.tRk	RAMP	Š		Guaranteed Ramp: soak SP must be reached in ramp time	
		SoAk			Guaranteed Soak: soak time always preserved	
		CYCL			Guaranteed Cycle: ramp can extend but cycle time can't	
1			Note: tIM.F doe		s not appear for 6 digit display that use a HH:MM:SS format	
	tIM.F	MM:SS			"Minutes : Seconds" default time format for R/S programs	
		HH:MM	l		"Hours : Minutes" default time format for R/S programs	
	E.ACt	StOP	5		Stop running at the end of the program	
		HOLd	j –	1	Continue to hold at the last soak setpoint at program end	
		LINk			Start the specified ramp & soak program at program end	
	N.SEG				1 to 8 Ramp/Soak segments (8 each, 16 total)	
	S.SEG				Select segment number to edit, entry replaces # below	
			MRt.#		Time for Ramp number, default = 10	
			MRE.#	oFF	Ramp events on for this segment	
				oN	Ramp events off for this segment	
			MSP.#	<u></u>	Setpoint value for Soak number	
			MSt.#		Time for Soak number, default = 10	
			MSE.#	oFF	Soak events off for this segment	
				oN	Soak events on for this segment	

3. Operating Mode Menu (oPER)

a. The following table maps the Operating Mode (oPER) navigation:

Level 2	Level 3	Level 4	Notes
RUN			Normal Run Mode, process value displayed, SP1 in optional secondary display
SP1	<u></u>		Shortcut to change Setpoint 1, current Setpoint 1 value in main display
SP2	12 21		Shortcut to change Setpoint 2, current Setpoint 2 value in main display
MANL	M.CNt		Manual Mode, the RIGHT and LEFT buttons control output, displays M##.#
	M.INP	-	Manual Mode, the RIGHT and LEFT buttons simulate the input for testing
PAUS			Pause and hold at current process value, display flashes
StoP	<u>(</u>		Stop controlling, turn off outputs, process value rotating flash, Alarms remain
L.RSt			Clears any latched Alarms; Alarms menu also allows digital input reset
VALy	1		Displays the lowest input reading since the VALy was last cleared
PEAk			Displays the highest input reading since the PEAk was last cleared

Level 2	Level 3	Level 4	Notes
Stby			Standby Mode, outputs, and Alarm conditions disabled, displays Stby
tARE			TARE option - only available if enabled in INPt

Changing Temperature Units on the Omega Temperature Controller

1. Press the up button until "oPER" appears on the screen.

2.	Press the right arrow 🜔 until "1 NI t" appears on the screen. Press enter. 📿
3.	Press the right arrow 🜔 until "RdG" appears on the screen. Press enter. 🛛 🕹
4.	"dEC.P" should be on screen. Press right arrow 🕟 to show " "F "C " on the screen. Press enter.
5.	Use arrows 🔇 🜔 to switch from °C to °F. Press enter. 🕑
6.	Press the up arrow 🚯 to go back to the "1 NI t" screen. Press the left arrow
	to go back to "oPER". Press enter 🛛 to see "RUN" and press enter again 🕘
	to return to normal operating status.

Run Process

- 1. Position the components to be processed between the die heads and in the tooling nests.
- 2. Lower the guide covers onto the product.
- 3. Depress the start button or foot switch to initiate the process sequence.
- 4. Upon completion of the cooling cycle, lift the guide covers and remove the assembly.

Maintenance

- 1. Use 99% isopropyl alcohol to wipe down the outside of the machine. Do not attempt to clean the inside of the machine. The machine should not be washed down.
- 2. Cleaning should be with a soft dry cloth only.

NOTE: Ensure the machine is unplugged for any servicing or maintenance work. NOTE: Perform these steps ONLY when the machine is at room temperature.

Exchanging Die Heads

- 1. Remove upper heat shields.
- 2. Loosen the thermocouple set screw in each die head and slide the thermocouple out of each head.
- 3. Remove the fasteners at the base of each die head and remove the die heads.
- 4. Position the replacement die heads on the die bases with the thermocouple mounting holes facing away from each other.
- 5. Re-install the fasteners at the base of each die head, DO NOT tighten the fasteners.
- 6. Manually close the die heads and ensure that they are aligned left-to-right and, while holding the heads together, tighten the base fasteners.
- 7. Fully insert each thermocouple into each die head and lightly tighten each set screw.
- 8. Re-install each upper heat shield.

Exchanging Vee Guides

- 1. Raise the guide cover(s).
- 2. Remove the two fasteners in the guide/insert and remove the guide/insert.
- 3. Install the replacement guide/insert.
- 4. Re-install the mounting fasteners.

Aligning Tooling

- NOTE: Alignment should be performed on a prepared product subassembly.
- NOTE: Alignment MUST be performed with system power off and heads at ambient temperature. Alignment must be performed on a flat and reasonably level surface.
 - 1. Remove the Y-Z axis covers of each vee guide/clamp assembly and the Z-axis cover of the die head assembly.
 - 2. Prepare an assembly.
 - 3. Position the assembly within the vee guide assemblies on either side of the die heads and with the bond area.
 - 4. Leave guide covers open.
 - 5. Carefully close the die heads while observing the alignment with the die head bore.

- 6. Adjust the Z-axis of the die head assembly as required such that the sub assembly is secured by the dies but slightly above the vee guides/inserts.
- 7. Adjust the Y-Z axis of each vee guide assembly until each guide comes into contact with the first feature of the subassembly on the corresponding side.
- 8. Close the guide covers.
- 9. Manually open and close the die heads and verify alignment.
- 10. Re-adjust each axis as required to obtain optimum alignment.

Preventative Maintenance

- 1. Check power cable for damage every 12 months and replace as needed.
- 2. Check setting of pre-regulator every 12 months.

Operational Requirements

System Specifications

Description	Range	Resolution	Accuracy
Temperature	200-750° F	1.0 deg.	+/25% F.S.
Air Flow	20-50 SCFH	5.0 SCFH	+/- 4% F.S.

Table 3: System Specifications

Critical Spare Parts

(Contact Beahm Designs for current Price and delivery)

Part Number	Description
120V – 1153590-001	Heater Cartridge
220V - 1157788-001	
1143133-001	Thermocouple
3054593-101	Blank Die Heads (0.5") (Pair)
1348043-001	Air Pressure Gauge
1161899-001	Temperature Controller
1143311-001	Solid State Relay
1143287-001	Relay, 24 VDC
1343250-001	Valve, 2 Way
1330445-003	Valve, 5-2

Table 4. Critical Spare Parts

Diagnostics (Troubleshooting)

Issue	Possible Causes	Solution
Temperature not stable	Thermal Nozzle replaced.	Auto-tune.
	Thermocouple loose	Re-install thermocouple.
S.br	Break in thermocouple wire/	Verify all connections from
	Thermocouple failure	controller to remote TC jack.
		Replace thermocouple
No heat at dies	Defective heating element	Replace heating element.
	Defective power control	
.Err code in display	Temperature controller	Replace temperature
	software failure.	controller.
System will not power on.	IEC power cord not fully	Verify installation.
	connected.	

Table 5. Diagnostics and Troubleshooting

Facility Requirements

- Voltage: 120-240 VAC, 50/60 Hz
- Wattage: 10 amps (500 watts)
- Compressed Air: 100-125 psi, clean dry compressed air

Warranty

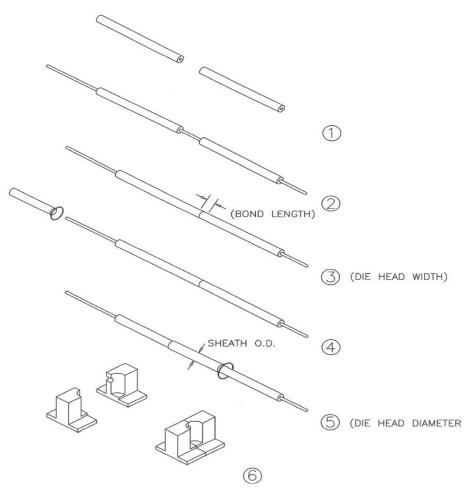
Beahm Designs Inc. (BDI) products are backed by a 1-year warranty on parts and labor. Warranty is void for any product returned if BDI determines that:

- 1. The asserted defect is not present.
- 2. The asserted defect is attributed to misuse, improper installation, alteration (label removal and/or destruction), opening or removing external covers without authorization by Beahm Designs Inc.), mishandling and/or mishaps.
- 3. The product was not sold to you as new.

Return Material Authorization

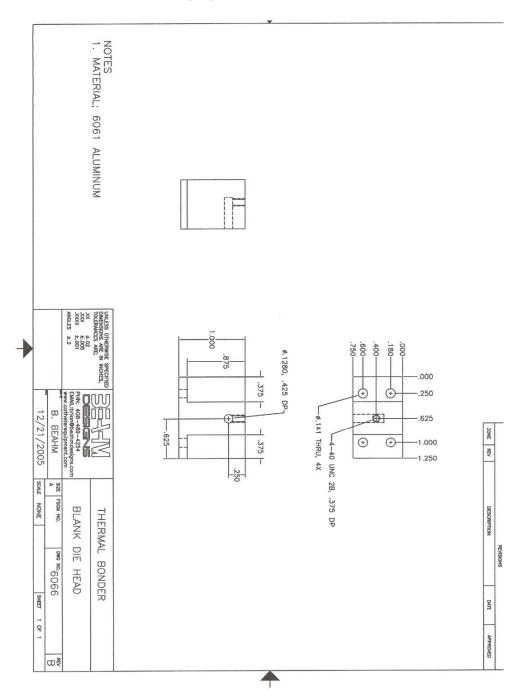
Product may not be returned to Beahm Designs Inc. without first contacting BDI Aftermarket for a Return Material Authorization (RMA) number. If it is determined that the Product may be defective, you will be given an RMA number and instructions for Product return. End Users are required to include a copy of the RMA receipt inside the return box, to receive replacement product under warranty. An unauthorized return, i.e., one for which an RMA number has not been issued, will be returned at the customers expense. To request an RMA, please contact us at 928-556-3109 or email info@machinesolutions.com.

For additional information on Beahm Designs, Split Die Thermal Bonder, please visit <u>http://machinesolutions.com/our-products/</u>.



Appendix

Die Head Sizing


- 1. Description: This procedure describes the process of sizing the Thermal Die Head tooling.
- 2. Tools and Equipment:
 - 2.1 Caliper or micrometer
- 3. Reference
 - 3.1 Figure A-1, Die Head Sizing
 - 3.2 Drawing
- 4. Procedure
 - 4.1 Assemble components to be bonded over mandrel(s). Figure A-1, 1-2.
 - 4.2 Measure bond length, tubing overlap, and balloon sleeve length. Figure A-1, 1-3.
 - 4.3 Position protective sleeves (fitted PTFE, PET heat shrink, or Polyolefin heat shrink) over bond location. Figure A-1, 1-4.
 - 4.4 For heat shrink sleeves (PET, Polyolefin etc.), shrink the sleeve onto the bond location.
 - 4.5 Measure O.D. of protective sleeve at bond location. Figure A-1, 1-5.
 - 4.6 Machine the die heads to width based on value in step 4.2.
 - 4.7 Bore hole through heads .003" less than the diameter value in step 4.4.
 - 4.8 For Balloon Shield bore size, add .005" to the product OD (without sleeve).

